Sublinear Higson corona of Euclidean cone

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Higson-roe Corona

Higson-Roe compacti cations rst arose in connection with C -algebra approaches to index theory on noncompact manifolds. Vanishing and/or equivariant splitting results for the cohomology of these compacti cations imply the integral Novikov Conjecture for fundamental groups of nite aspherical CW complexes. We survey known results on these compacti cations and prove some new results { most notably...

متن کامل

Some ‘homological’ properties of the stable Higson corona

We establish certain ‘homological properties’ of the stable Higson corona used by Emerson and Meyer to study the Dirac-dual-Dirac approach to the Baum-Connes conjecture [5]. These are used to obtain explicit isomorphisms between the K-theory of the stable Higson corona of certain spaces X and the topological K-theory of natural geometric boundaries of X. This is sufficient to give a simple proo...

متن کامل

6 J ul 2 00 6 ON ASYMPTOTIC ASSOUAD - NAGATA DIMENSION

For a large class of metric spaces X including discrete groups we prove that the asymptotic Assouad-Nagata dimension AN-asdim X of X coincides with the covering dimension dim(ν L X) of the Higson corona of X with respect to the sublinear coarse structure on X. Then we apply this fact to prove the equality AN-asdim(X × R) = AN-asdim X + 1. We note that the similar equality for Gromov's asymptoti...

متن کامل

The Structure of Closed Nonpositively Curved Euclidean Cone 3-manifolds

A structure theorem is proven for closed Euclidean 3-dimensional cone manifolds with all cone angles greater than 2π and cone locus a link (no vertices) which allows one to deduce precisely when such a manifold is homotopically atoroidal, and to construct its characteristic submanifold (torus decomposition) when it is not. A by-product of this structure theorem is the result that any Seifert-fi...

متن کامل

Differential properties of Euclidean projection onto power cone

In this paper, we study differential properties of Euclidean projection onto the power cone K (p,q) n = {(x, y, z) ∈ R+ × R+ × R, ∥z∥ ≤ xy}, where 0 < p, q < 1, p + q = 1. Projections onto certain power cones are examples of semismooth but non-stronglysemismooth projection onto a convex cone.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2012

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1341951745